Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Osteoclast biology: Lessons from mammalian mutations

Identifieur interne : 00BD06 ( Main/Exploration ); précédent : 00BD05; suivant : 00BD07

Osteoclast biology: Lessons from mammalian mutations

Auteurs : Sandy C. Marks Jr.

Source :

RBID : ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188

English descriptors

Abstract

Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.

Url:
DOI: 10.1002/ajmg.1320340110


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<author>
<name sortKey="Marks Jr, Sandy C" sort="Marks Jr, Sandy C" uniqKey="Marks Jr S" first="Sandy C." last="Marks Jr.">Sandy C. Marks Jr.</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188</idno>
<date when="1989" year="1989">1989</date>
<idno type="doi">10.1002/ajmg.1320340110</idno>
<idno type="url">https://api.istex.fr/document/3B6E64BD8D35E3650BAEF3E092663925FA698188/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D04</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D04</idno>
<idno type="wicri:Area/Istex/Curation">001D04</idno>
<idno type="wicri:Area/Istex/Checkpoint">005880</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">005880</idno>
<idno type="wicri:doubleKey">0148-7299:1989:Marks Jr S:osteoclast:biology:lessons</idno>
<idno type="wicri:Area/Main/Merge">00C458</idno>
<idno type="wicri:Area/Main/Curation">00BD06</idno>
<idno type="wicri:Area/Main/Exploration">00BD06</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Osteoclast biology: Lessons from mammalian mutations</title>
<author>
<name sortKey="Marks Jr, Sandy C" sort="Marks Jr, Sandy C" uniqKey="Marks Jr S" first="Sandy C." last="Marks Jr.">Sandy C. Marks Jr.</name>
<affiliation></affiliation>
<affiliation>
<wicri:noCountry code="subField">01655</wicri:noCountry>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">American Journal of Medical Genetics</title>
<title level="j" type="alt">AMERICAN JOURNAL OF MEDICAL GENETICS</title>
<idno type="ISSN">0148-7299</idno>
<idno type="eISSN">1096-8628</idno>
<imprint>
<biblScope unit="vol">34</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="43">43</biblScope>
<biblScope unit="page" to="54">54</biblScope>
<biblScope unit="page-count">12</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>New York</pubPlace>
<date type="published" when="1989-09">1989-09</date>
</imprint>
<idno type="ISSN">0148-7299</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-7299</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Abstr</term>
<term>Anat</term>
<term>Anat marks</term>
<term>Anhydrase</term>
<term>Bone cell biology</term>
<term>Bone formation</term>
<term>Bone marrow</term>
<term>Bone marrow transplantation</term>
<term>Bone matrix</term>
<term>Bone resorption</term>
<term>Bone surfaces</term>
<term>Calcif tissue</term>
<term>Carbonic</term>
<term>Carbonic anhydrase</term>
<term>Cell biology</term>
<term>Clear zones</term>
<term>Congenital</term>
<term>Congenital osteopetrosis</term>
<term>Cytoplasmic</term>
<term>Cytoplasmic vacuoles</term>
<term>Heterogeneity</term>
<term>Hypercalcemic effects</term>
<term>Immune</term>
<term>Immune system</term>
<term>Liss</term>
<term>Littermate</term>
<term>Littermates</term>
<term>Mammalian osteopetroses</term>
<term>Marrow</term>
<term>Matrix</term>
<term>Mcguire</term>
<term>Metab bone</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Natural killer cell activity</term>
<term>Normal littermate</term>
<term>Normal littermates</term>
<term>Normal mouse</term>
<term>Osteoblast</term>
<term>Osteoclast</term>
<term>Osteoclast biology</term>
<term>Osteoclast function</term>
<term>Osteoclast ontogeny</term>
<term>Osteopetroses</term>
<term>Osteopetrosis</term>
<term>Osteopetrotic</term>
<term>Osteopetrotic mutants</term>
<term>Osteopetrotic mutations</term>
<term>Osteopetrotic rats</term>
<term>Parathyroid</term>
<term>Parathyroid hormone</term>
<term>Pathogenetic pathways</term>
<term>Plasma membrane</term>
<term>Popoff</term>
<term>Relfson</term>
<term>Resorption</term>
<term>Schneider</term>
<term>Seifert</term>
<term>Skeletal resistance</term>
<term>Spleen</term>
<term>Spleen cells</term>
<term>Temporary parabiosis</term>
<term>Transplantation</term>
<term>Vacuole</term>
<term>Vascular channels</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Abstr</term>
<term>Anat</term>
<term>Anat marks</term>
<term>Anhydrase</term>
<term>Bone cell biology</term>
<term>Bone formation</term>
<term>Bone marrow</term>
<term>Bone marrow transplantation</term>
<term>Bone matrix</term>
<term>Bone resorption</term>
<term>Bone surfaces</term>
<term>Calcif tissue</term>
<term>Carbonic</term>
<term>Carbonic anhydrase</term>
<term>Cell biology</term>
<term>Clear zones</term>
<term>Congenital</term>
<term>Congenital osteopetrosis</term>
<term>Cytoplasmic</term>
<term>Cytoplasmic vacuoles</term>
<term>Heterogeneity</term>
<term>Hypercalcemic effects</term>
<term>Immune</term>
<term>Immune system</term>
<term>Liss</term>
<term>Littermate</term>
<term>Littermates</term>
<term>Mammalian osteopetroses</term>
<term>Marrow</term>
<term>Matrix</term>
<term>Mcguire</term>
<term>Metab bone</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Natural killer cell activity</term>
<term>Normal littermate</term>
<term>Normal littermates</term>
<term>Normal mouse</term>
<term>Osteoblast</term>
<term>Osteoclast</term>
<term>Osteoclast biology</term>
<term>Osteoclast function</term>
<term>Osteoclast ontogeny</term>
<term>Osteopetroses</term>
<term>Osteopetrosis</term>
<term>Osteopetrotic</term>
<term>Osteopetrotic mutants</term>
<term>Osteopetrotic mutations</term>
<term>Osteopetrotic rats</term>
<term>Parathyroid</term>
<term>Parathyroid hormone</term>
<term>Pathogenetic pathways</term>
<term>Plasma membrane</term>
<term>Popoff</term>
<term>Relfson</term>
<term>Resorption</term>
<term>Schneider</term>
<term>Seifert</term>
<term>Skeletal resistance</term>
<term>Spleen</term>
<term>Spleen cells</term>
<term>Temporary parabiosis</term>
<term>Transplantation</term>
<term>Vacuole</term>
<term>Vascular channels</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Major contributions to and confirmations of osteoclast biology have been made by experimental investigations of the osteopetrotic mutations in mammals. Congenital osteopetrosis is a bone disease characterized by a generalized increase in skeletal mass due to decreased osteoclast function. Abnormalities of skeletal growth and the failures of marrow cavity development and tooth eruption are secondary to reduced bone resorption of heterogeneous cause. Elucidation of pathogenetic pathways and unraveling of the cell biology of the osteoclast have proceeded hand‐in‐hand. This is illustrated by the variable differentiation and activation of osteoclasts among mutations and by demonstrations that the disease in certain animals and children can be cured by providing competent stem cells for osteoclasts via bone marrow transplantation. Congenital absence of carbonic anhydrase II (CA II) in children results in a syndrome that included osteopetrosis because osteoclasts are unable to function in the absence of CA II. The resistance of all mutations to the hypercalcemic effects of parathyroid hormone and recent reports of elevated blood levels of 1,25 dihydroxyvitamin D have broadened the scope of pathogenetic possibilities for osteopetrosis and regulatory possibilities for osteoclasts. Immunological effects including reductions in natural killer cell activity, superoxide and interleukin‐2 production make osteopetrotic mutants potential models for studying the role of the immune system in osteoclast biology. Furthermore, coexistence of osteopetrosis with rickets and osteoblast abnormalities and the failure of cell transplants to cure the disease in some mutations illustrate the utility of the osteopetroses for exploring the role of matrix as mentor in osteoclast biology. Thus, understanding congenital osteopetrosis and osteoclast biology are likely to continue together.</div>
</front>
</TEI>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Marks Jr, Sandy C" sort="Marks Jr, Sandy C" uniqKey="Marks Jr S" first="Sandy C." last="Marks Jr.">Sandy C. Marks Jr.</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00BD06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00BD06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:3B6E64BD8D35E3650BAEF3E092663925FA698188
   |texte=   Osteoclast biology: Lessons from mammalian mutations
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022